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Abstract

This paper presents a boundary treatment method for 2D elliptic mesh generation in complex geometries. Correspond-
ing to Neumann–Dirichlet boundary conditions (sliding boundary conditions), the proposed method aims at achieving
orthogonal and smooth nodal distribution along irregular boundaries. In this method, a three-lined auxiliary mesh is con-
structed which is composed of the boundary line, an auxiliary line generated on its inner side, and the reflection line of this
auxiliary line. The movements of the boundary nodes are determined by solving this auxiliary mesh. The boundary nodes
are further corrected and adjusted by a second-order parabolic interpolation method and a weighting parameter depending
on the curvature of the boundary. The proposed method was demonstrated through examples, and applied to field cases
with complex geometries. It has been shown that this method is stable and effective in producing high quality meshes.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

To achieve a mapping between the physical coordinates and the computational coordinates, elliptic mesh gen-
eration solves a set of partial differential equations (PDE) in a bounded domain with initial conditions and
boundary conditions. In this initial-boundary value problem, three kinds of boundary conditions are available:
(1) Dirichlet boundary conditions: the boundary nodal distribution is specified and fixed; (2) Neumann–Dirichlet
boundary conditions: the boundary nodes move along boundaries (Dirichlet) to satisfy the orthogonal condition
(Neumann) and, (3) Neumann boundary conditions. Since purely Neumann boundary conditions cannot gen-
erate boundary-fitted meshes [4], the first two types of boundary conditions are widely used in practice.

The TTM generation system developed by Thompson et al. [9], the RL generation system proposed by
Ryskin and Leal [6], and the conformal mapping system [10] are the most famous and widely used elliptic
mesh generation systems. When generating orthogonal mesh in geometrically complex domains with weak
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constraints (specified boundary distribution) corresponding to the Dirichlet boundary conditions, if inappro-
priate nodal distribution is imposed along boundaries, the mesh quality cannot be guaranteed using the above
systems. For examples, Ec�a [2], and Zhang et al. [11–13] pointed out that serious skewness or distortion and
overlapping may occur using the RL system due to the local strong orthogonal conditions and, the conformal
mapping may produce folded meshes due to the strong smoothness constraint—equal scale factors in all direc-
tions. According to the numerical tests of Ec�a [2], favorable boundary nodal distribution can greatly improve
mesh quality. However, it is difficult to predict such an appropriate initial nodal distribution (usually non-uni-
form) along boundaries. Instead, in practice the most direct and natural boundary nodal distribution is equal-
spaced or uniform which may work well in simple domains but not in complex ones. In order to control the
mesh near the boundaries with Dirichlet boundary conditions, Sorenson [7] used a second-order elliptic equa-
tions with inhomogeneous source terms (control functions) to simulate the Neumann boundary conditions.
Thomas and Middlecoff [8] also derived a set of orthogonal control functions which are evaluated at the
boundaries and interpolated for the interior nodes so that orthogonality at the boundaries can be achieved
with boundary nodes fixed.

Compared with the rigidness of the Dirichlet boundary conditions, the Neumann–Dirichlet boundary con-
ditions is more flexible and can significantly improve mesh quality if appropriately applied, otherwise it may
even cause failures of mesh generation. For examples, Duraiswami and Prosperetti [1] successfully employed
this type of boundary conditions in the RL system; Jeng and Chen [3] used the least-square method to derive a
functional defined by the deviation from Beltrami equation so that the boundary nodes can slide along bound-
aries to minimize this functional and, Ec�a [2] also tested the Neumann–Dirichlet boundary conditions in the
RL system and observed numerical divergence when evaluating the distortion function using its original def-
inition. Although the Neumann–Dirichlet boundary conditions enjoyed some successes in certain applications,
difficulties still remain in applying them to highly irregular boundaries large amount of which exist in fields in
computational fluids dynamics (CFD) analysis. One difficulty lies in the control of the nodal movements along
boundaries. To prevent boundary nodes from overtaking or collapsing to its neighbors to satisfy the orthog-
onal condition, ‘‘guards” must be used to limit the nodal movements [5]. It is difficult to define such a ‘‘guard”

appropriate for each boundary node. Another difficulty is to keep the shape of the boundaries unchanged as
much as possible. Thus, special treatments, such as curvature corrections [3], need to be used.

In this paper, a method of applying the Neumann–Dirichlet boundary conditions to complex geometries
has been developed. This method is capable of producing orthogonal and smooth nodal distribution along
boundaries, and an auxiliary mesh based on the boundary line and its neighboring mesh line is necessary.
The nodal movements along boundaries are controlled by solving this auxiliary mesh using an elliptic mesh
generation system. In this method, a second-order boundary curvature correction method is used to minimize
the curvature changes caused by the movements of the boundary nodes, and further adjustments of the bound-
ary nodes are achieved by a weighting parameter related to the curvature of the boundaries. Some academic
examples and applications for natural rivers are used to illustrate the proposed method.

2. Current study

2.1. Conventional method

In 2D elliptic mesh generation, a domain is bounded by at least four boundaries and a boundary is com-
posed of at least three boundary nodes and both starts and ends with a corner. Two types of boundary con-
ditions, namely, the Dirichlet boundary condition and the Neumann–Dirichlet boundary condition are
generally used. Boundary nodes are fixed and cannot move in the Dirichlet boundary conditions; while in
the Neumann–Dirichlet boundary condition, boundary nodes can slide along boundaries (Dirichlet) to satisfy
the orthogonal conditions (Neumann), so it is also called the sliding boundary condition. The Dirichlet
boundary condition is simple and easy to use, but it is rigid and the mesh quality depends largely on the initial
nodal distribution along boundaries. Numerical tests by Ec�a [2] and Zhang et al. [11–13] showed that inap-
propriate nodal distribution may cause serious skewness interiorly, although orthogonality at the boundaries
can be achieved. Compared to the Dirichlet boundary conditions, the Neumann–Dirichlet boundary condition
is more difficult to use especially for cases with complex boundaries.
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Considering a mapping between the physical coordinates (xi(�x,y), i = 1,2) and the computational coor-
dinates (ni (�n,g), i = 1,2), a metric tensor gij can be defined as follows:
g ¼
ðx2

n þ y2
nÞ ðxnxg þ ynygÞ

ðxnxg þ ynygÞ ðx2
g þ y2

gÞ

( )
; ð1Þ
where xn = ox/on and so forth.
For one boundary node ðxb

i ; y
b
i Þ, as shown in Fig. 1, the movements of this node ðDxb

i ;Dyb
i Þ to satisfy the

orthogonal condition (g12 = g21 = 0) (Neumann) can be expressed in central difference discretization as
follows:
Dxb
i ¼

xb
n � xb

g þ yb
n � yb

g

ðxb
gÞ

2 þ ðyb
gÞ

2
� xb

g � rb; ð2Þ

Dyb
i ¼

xb
n � xb

g þ yb
n � yb

g

ðxb
gÞ

2 þ ðyb
gÞ

2
� yb

g � rb; ð3Þ

xb
n ¼ xb

i � xn
i ; ð4aÞ

yb
n ¼ yb

i � yn
i ; ð4bÞ

xb
g ¼ ðxb

iþ1 � xb
i�1Þ=2; ð4cÞ

yb
g ¼ ðyb

iþ1 � yb
i�1Þ=2; ð4dÞ
where the superscripts ‘‘b” and ‘‘n” denote the boundary node and the neighboring interior node, respectively
and, rb (0–1) is an empirical parameter to control the movements.

In Eqs. (2) and (3), rb is usually in a range of [0,0.5] and used to prevent the boundary node from moving
out of the boundary segment it belongs to [5]. Although varied distribution of rb is more reasonable and
desired, constant value is often used in practice, because it is difficult to specify an appropriate distribution
of rb for all boundary nodes.

To satisfy the Dirichlet boundary condition (sliding along boundaries), a certain second-order or high-
order interpolation is usually employed to further adjust the movements of the boundary node (called bound-
ary curvature correction) to make sure the boundary nodes moves only ‘‘along” boundaries.
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b b

i i
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Fig. 1. Conventional method.
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2.2. Auxiliary mesh

For the conventional method [5], the movements of the boundary nodes are driven only by the orthogonal
conditions at the boundary. The success of this method depends largely on the appropriate selection of empir-
ical parameter rb. Too large value of rb may lead to collapse of boundary nodes, while too small value may
result in insufficient movements of the boundary nodes.

In general, an elliptic mesh generation system is able to produce smooth and orthogonal interior mesh with
the Dirichlet boundary conditions. This favorable characteristic inspires an idea that the movements of the
boundary nodes are controlled by an elliptic generation system. For this purpose, an auxiliary mesh needs
to be constructed for the selected boundary, and it must satisfy the following two basic requirements:

(1) the selected boundary serves as an interior mesh line of it and,
(2) it should contain information from the interior domain.

In current study, this auxiliary mesh is constructed based on the boundary line and its immediate interior
neighboring mesh line. The size of the auxiliary mesh is 3 � np (np is the number of boundary nodes).

Let Fb(x1,y1,x2,y2, . . . ,xnp,ynp) denote a selected boundary and Fnb(x1,y1,x2,y2, . . . ,xnp,ynp) denote its inte-
rior neighboring mesh line, respectively (see Fig. 2(a)), then the auxiliary mesh for this boundary can be con-
structed as follows:

An auxiliary mesh line F1 is directly obtained from the boundary line Fb and its neighboring line Fnb:
F 1ðx1; y1; x2; y2; . . . ; xnp; ynpÞ ¼ F nbðx1; y1; x2; y2; . . . ; xnp; ynpÞ þ rm � ½F bðx1; y1; x2; y2; . . . ; xnp; ynpÞ
� F nbðx1; y1; x2; y2; . . . ; xnp; ynpÞ�; ð5Þ
where rm is a parameter in a range of [0, 1].
Another auxiliary line F3 outside Fb is necessary for constructing the auxiliary mesh which can be deter-

mined in three steps:

(a) Starting from a node except the first and the last on the first auxiliary line F1, a line is drawn perpen-
dicularly to intersect the boundary line Fb so that an intermediate line Fin(x1,y1,x2,y2, . . . ,xnp,ynp) com-
posed of the interception points can be obtained.
(b) The two ending nodes (x1,y1) and (xnp,ynp) of F1, as shown in Fig. 2(b), move along F1 to ðx01; y01Þ and
ðx0np; y

0
npÞ where a perpendicular line can be drawn to intersect Fb.

(c) The auxiliary mesh line F3 is a reflection of the first auxiliary line F1 with equal distance to the interme-
diate line Fin:
F 3ðx1; y1; x2; y2; . . . ; xnp; ynpÞ ¼ F 1ðx01; y01; x2; y2; . . . ; x0np; y
0
npÞ þ 2 � ½F inðx1; y1; x2; y2; . . . ; xnp; ynpÞ

� F 1ðx01; y 01; x2; y2; . . . ; x0np; y
0
npÞ�: ð6Þ
In [5], a reflected neighboring mesh line with equal distance across the boundary was proposed to evaluate
the orthogonal control functions at the boundary developed by Thomas and Middlecoff [8]. Eq. (6) describes a
different reflection: the first mesh line F1 and the reflected line (the third mesh line) F3 are in symmetry to the
boundary line Fb, the auxiliary mesh therefore can be solved with the Dirichlet boundary conditions to achieve
orthogonality along the boundary line Fb.

The width of the auxiliary mesh is controlled by the parameter rm in Eq. (5). The smaller it is, the narrower
would be the auxiliary mesh, and vice versa. With rm close to 0, the three mesh lines will collapse into one line
and the boundary nodes will become frozen. Although rm is a scale parameter with similar function to rb defined
in Eqs. (2) and (3), in the conventional method rb can directly control the movements of the boundary nodes
and is evaluated completely empirically, while in the current study, rm has indirect influences on the nodal
movements along boundaries, and the evaluation of rm can be guided by the following rule: an appropriate
value of the parameter rm will produce a valid auxiliary mesh without mesh lines across each other. An invalid
auxiliary mesh indicates a big value of the parameter rm which must be reduced. In the current study, according
to numerical tests, a value of 0.5 is found optimal for rm.
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Fig. 2. Auxiliary mesh.
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The auxiliary mesh has only three mesh lines and the boundary conditions (F1 and F3) have direct and
strong influences on the interior mesh (Fb), so the convergence process normally will be fast. Secondly, in
the outer iteration cycle, it is not necessary to have a converged solution since it will be used next as boundary
condition for the inner cycle. Therefore, in current study, one iteration cycle is recommended to solve the aux-
iliary mesh. With this approach, both the interior and the boundaries are solved by the elliptic generation
system.

2.3. Boundary curvature correction

The movements of the boundary nodes must be restricted along the exact boundaries to preserve the ori-
ginal boundary value problem. The boundary can be represented by either local or global polynomial func-
tions, such as cubic Spline and B-Spline. For complicated boundary which may not satisfy the continuous
conditions, special cares must be taken for the cubic Spline line, while the B-Spline does not pass through
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all the shape control points of a boundary. Compared to the global functions, the local polynomial function is
more stable, flexible and easy to use. In current study, a second-order polynomial is employed to fit the local
boundary curve and correct the boundary curvature.

For one typical boundary node (xb,yb), the new location of this node obtained by solving the auxiliary mesh
is denoted by ðx0b; y0bÞ in which only one coordinate is independent because it should be on the local boundary
curve. In other words, one coordinate needs to be adjusted while the other one is fixed. Assuming (xk,yk),
(xk+1,yk+1), and (xk+2,yk+2) are three closest points on the original boundary curve, then one can obtain
the corrected x00b and y00b as follows:
x00b ¼
Xkþ2

i¼k

Ykþ2

j¼k
j 6¼i

y0b � yj

yi � yj

0
BB@

1
CCA � xi if jxkþ2 � xkj 6 jykþ2 � ykj; ð7Þ

y 00b ¼
Xkþ2

i¼k

Ykþ2

j¼k
j6¼i

x0b � xj

xi � xj

0
BB@

1
CCA � yi if jxkþ2 � xkjP jykþ2 � ykj: ð8Þ
Eqs. (7) and (8) calculate the differences of y and x coordinates for the three closest points. In case two points are
on one vertical or horizontal line, these equations will not be valid, and the users need to switch between them.
Therefore, either Eq. (7) or (8) is used to adjust the boundary node to make it fit the original boundary curve.

In the case that the original boundary curve can be represented by a known function, this function will be
used to correct the location of the boundary node. Note that no matter how accurate the curvature correction
is or even the exact boundary curve function is known, there will be changes for the boundary curves when
applying the sliding boundary condition. In other words, the curvature changes are inevitable, but the curva-
ture correction can help to minimize the changes to some extent, and it can make the new locations of the
boundary nodes as close to the original curve as possible, which is very important in mesh generation.
2.4. Weighted boundary

Different boundaries with different curvatures and shapes have different influences on the mesh quality. In
general, boundaries with simpler shapes (low curvatures) will have less influence than those with complex
shapes (high curvatures). In other words, boundaries with complex shapes will cause more difficulties for mesh
generation and thus they demand higher priorities to be treated.

On the other hand, with the boundary nodes moving, the boundary curve, represented by finite number of
the piece-wise line segments, will change accordingly even with curvature corrections which can only minimize
the changes to some extent. When the mesh is not fine enough, this drawback will become more significant. So
in principle, the Neumann–Dirichlet boundary conditions should be only applied to where it is necessary.
Based on this point of view, in the current study a weighting parameter is proposed to each boundary accord-
ing to its curvature:
wb ¼
Cb

maxðCbÞ
; ð9Þ
where Cb represents the curvature of boundary Fb and is defined as follows:
Cb ¼
Xnp

1

hi; ð10aÞ

hi ¼ bi=p; ð10bÞ
where bi is the angle at the node i between its two neighboring nodes on boundary Fb.
As can be seen in Eqs. (9) and (10), the boundary with maximum curvature will have the highest weight 1,

and the boundary without curvature (straight line) will be assigned a weight of 0. In case that all boundaries
are straight lines, the above equations become invalid.
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Eq. (9) is used for final tuning of the movements of the boundary nodes. For one typical boundary node
(xb,yb), its new location will be
xnew
b ¼ xb � ð1� wbÞ þ x00b � wb; ð11aÞ

ynew
b ¼ yb � ð1� wbÞ þ y00b � wb; ð11bÞ
where ðx00b; y00bÞ is the location after curvature correction.
From Eq. (11), obviously the boundary nodes on straight line will be kept fixed and the Dirichlet boundary

condition will be applied to this boundary.

2.5. Measures of boundary curvature preservation

The measurements of the boundary curvature preservation can be obtained by comparing the new bound-
ary curve Fnew with the original boundary curve Fb. In this study, instead of directly comparing Fnew with Fb,
Cnew and Cbðpb;0; pb;1; . . . ; pb;nÞ, the new representations of Fnew and Fb using B-Spline with the same degree
(=3) and the same number of points n, are used for comparisons. To make a fair comparisons, a set of points
(pnew,0,pnew,1, . . . ,pnew,n)are interpolated from Cnew so that each pair of points (pnew,i and pb,i) satisfies either of
the following conditions: (1) xnew,i = xb,i and, (2) ynew,i = yb,i.

Three metrics are defined to compare Cnew and Cb using the abovementioned two sets of points: maximum
curve difference (MCD), maximum angle difference (MAD), and maximum average angle difference (AAD):
MCD ¼ max jpnew;i � pb;ij=Lb; ð12aÞ
MAD ¼ max jdnew;i � db;ij; ð12bÞ

AAD ¼ max
1

n� 2

Xn�1

2

jdnew;i � db;ij
 !

; ð12cÞ
where jpnew,i � pb,ij represents the distance between pnew,i and pb,i; Lb is the total length of the boundary and, di

(in degree) is the angle at pi between pi�1 and pi+1.

2.6. Elliptic mesh generation system

For a valid auxiliary mesh, the movements of boundary nodes on Fb are driven and controlled by an elliptic
mesh generation system. Generally speaking, different elliptic generation systems will produce different meshes
in the same domain with the same boundary conditions. For examples, the RL system is more effective in
orthogonality, while the conformal mapping yields smoother meshes. Note that the proposed algorithm for
boundary treatments is generally suitable for other elliptic mesh generation systems. In current study, an
improved RL system with smoothness controls proposed by Zhang et al. [11] is selected due to its stable per-
formance in complex geometries.

This improved RL system can be described as follows:
o

on
ha

n � f
ox
on

� �
þ o

og
ha

g �
1

f
ox
og

� �
¼ 0; ð13aÞ

o

on
ha

n � f
oy
on

� �
þ o

og
ha

g �
1

f
oy
og

� �
¼ 0; ð13bÞ
where the distortion factor f is defined as the ratio of the scale factors in n- and g-directions, i.e.,
f ¼ hg

hn
¼

x2
g þ y2

g

x2
n þ y2

n

 !1=2

ð14Þ
and hn ¼ g1=2
11 , hg ¼ g1=2

22 .
One can obtain the discretization of Eq. (13) at one typical mesh node (i, j) using central difference scheme:
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F i;jxi;j ¼ fiþ1=2;jciþ1;jxiþ1;j þ fi�1=2;jci�1;jxi�1;j þ
ci;jþ1

fi;jþ1=2

xi;jþ1 þ
ci;j�1

fi;j�1=2

xi;j�1; ð15aÞ

F i;jyi;j ¼ fiþ1=2;jciþ1;jyiþ1;j þ fi�1=2;jci�1;jyi�1;j þ
ci;jþ1

fi;jþ1=2

yi;jþ1 þ
ci;j�1

fi;j�1=2

yi;j�1; ð15bÞ
where F i;j ¼ fiþ1=2;jciþ1;j þ fi�1=2;jci�1;j þ ci;jþ1

fi;jþ1=2
þ ci;j�1

fi;j�1=2
and ci,j is the contribution factor of mesh node (i, j) de-

fined as follows:
ciþ1;j ¼ ½ðhnÞiþ1=2;j�
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;j � xiþ1;jÞ2 þ ðyi;j � yiþ1;jÞ

2
q� �a

; ð16aÞ

ci�1;j ¼ ½ðhnÞi�1=2;j�
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;j � xi�1;jÞ2 þ ðyi;j � yi�1;jÞ

2
q� �a

; ð16bÞ

ci;jþ1 ¼ ½ðhnÞi;jþ1=2�
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;j � xi;jþ1Þ2 þ ðyi;j � yi;jþ1Þ

2
q� �a

; ð16cÞ

ci;j�1 ¼ ½ðhnÞi;j�1=2�
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi;j � xi;j�1Þ2 þ ðyi;j � yi;j�1Þ

2
q� �a

; ð16dÞ
where ci+1,j is the distance between point (i, j) and point (i + 1, j) and a 2 [0, 1] is a adjustable parameter.
When a ? 0, this improved RL system (Eq. (13)) approaches to the original RL system developed by

Ryskin and Leal [6]:
o

on
f

ox
on

� �
þ o

og
1

f
ox
og

� �
¼ 0; ð17aÞ

o

on
f

oy
on

� �
þ o

og
1

f
oy
og

� �
¼ 0: ð17bÞ
2.7. Solution procedure

The linearized system defined by Eq. (15) is solved using an iterative algorithm. In this study, the following
algorithm is proposed for boundary treatments in complex geometries using the improved RL system defined
in Eq. (13):

1. Define the boundaries of the domain and use an algebraic method to generate an initial mesh.
2. Identify each boundary and calculate its curvatures to assign the boundary weights wb using Eq. (9).

Note that the original boundaries identified in this step will be used for boundary curvature corrections
later.

3. Specify the parameter a defined in Eq. (16).
4. Calculate the distortion function f from Eq. (14).
5. Calculate the contribution factors using Eq. (16).
6. Solve Eq. (15) using fixed f obtained from step 4 and the contribution factors from step 5 with the

Dirichlet boundary condition for all boundaries.
7. Construct a valid auxiliary mesh for each boundary (see previous section for details) and solve this mesh

using the improved RL system with one iteration cycle to adjust the locations of the boundary nodes.
8. Perform boundary curvature corrections using Eqs. (7) or (8).
9. Update the location of the boundary nodes using Eq. (11).

10. Update the mesh and check if the convergence condition is satisfied. If not, repeat steps from 4 to 9.

Two convergence criterions are used and the satisfaction of either one will stop the computation. These two
criterions are defined as the maximum difference between the grid coordinates and the maximum relative dif-
ference of the distortion function f between consecutive iterations, respectively:
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max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn

i;j � xn�1
i;j Þ

2 þ ðyn
i;j � yn�1

i;j Þ
2

q� �
< 10�6; ð18Þ

max
f n � f n�1

f n

� �
< 10�6; ð19Þ
where n is the iteration number.
Obviously, the construction and the solving process of the auxiliary mesh need more computation and will

slow down the whole computation, which is a drawback of the present algorithm.

3. Examples

Four academic examples widely used in the literatures ([1–2] and [11–13]) are selected to illustrate the pres-
ent method and these four domains are defined as follows:

(1) Domain A (with concave boundary) is bounded by x = 0, x = 1, y = 0, and
y = 0.75 + 0.25sin(p(0.5 + 2x)).
(2) Domain B is a unit square with one half-circle on each side.
(3) Domain C is bounded by x = 0, y = 0, y = 1, and x ¼ 1

2
þ 1

6
cosðpyÞ.

(4) Domain D is bounded by two-half-circles and x-axis. The radius of the small circle is one-third of that of
the big one.

For these four domains, initial uniform nodal distribution is applied to all boundaries, and the exact curve
functions will be used for sliding boundary conditions. Two standard academic criterions, namely, orthogo-
nality and smoothness, are used to evaluate the mesh quality, which are represented by the following indica-
tors, maximum deviation orthogonality (MDO), averaged deviation from orthogonality (ADO), maximum
grid aspect ratio (MAR), and averaged grid aspect ratio (AAR):
MDO ¼ maxðhi;j � 90Þ; ð20aÞ

ADO ¼ 1

ðN i � 2Þ
1

ðNj � 2Þ
XNi�1

2

XNj�1

2

maxðhi;j � 90Þ; ð20bÞ

MAR ¼ max max fi;j;
1

fi;j

� �� �
; ð21aÞ

AAR ¼ 1

ðN i � 2Þ
1

ðNj � 2Þ
XNi�1

2

XNj�1

2

max max fi;j;
1

fi;j

� �� �
; ð21bÞ
where Ni and Nj are the maximum number of mesh lines in n- and g-directions, respectively; and h is defined as
hi;j ¼ arccos
g12

hnhg

� �
i;j

: ð22Þ
3.1. Symmetric domains

Figs. 3 and 4 show the meshes generated using different boundary conditions, and Table 1 summarizes the
mesh evaluations. According to the weights of the boundaries, the sliding boundary conditions were applied to
the top concaved boundary in domain A and all four boundaries in domain B, respectively.

As can be seen, in both domains, both boundary conditions successfully produced orthogonal meshes. As
for mesh smoothness, with the Dirichlet boundary conditions, due to the local strong orthogonal conditions
[11–13], meshes (A2 and B2) squeeze at the concave boundary in domain A and at the center of domain B and,
with the Neumann–Dirichlet boundary conditions, using the present method, the mesh quality (A3) has been
improved significantly both in orthogonality and smoothness in domain A; while in domain B, mesh (B3) still
squeeze to the four singular corners, although interior mesh was improved greatly. The four singular corners



(A1) Initial mesh (A2) Dirichlet boundary conditions with 0=α

(A3) Sliding boundary conditions with 0=α and 5.0=mr

Fig. 3. Meshes in domain A.
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in domain B resulted in grid around them with high deviation from orthogonality (MDO) for both boundary
conditions.

For the resulting meshes in A3 and B3, boundary curvature differences can be observed both quantitatively
and visually, but the boundary nodes are guaranteed to be on the exact original curves. As one expected, in
both cases the maximum curvature difference occurred at the coarse part of the boundaries (around two cor-
ners of top boundary in A3 and the crests of half-circles in B3, respectively). If the selected boundary with
sliding boundary conditions corresponds to a physical boundary, i.e., a wing of an aircraft, the above curva-
ture differences may not be tolerable and hence the resulting meshes (A3 and B3) cannot be accepted [5].

3.2. Asymmetric domains

As shown in Figs. 5, 6 and Table 2, similar observations on the resulting meshes in domains C and D can be
obtained. With Eq. (15), the right curved boundary of domain C and the two half-circled boundaries of
domain D were selected to use the Neumann–Dirichlet boundary conditions.



(B1) Initial mesh (B2) Dirichlet boundary conditions with 0=α

(B3) Sliding boundary conditions with 0=α  and 5.0=mr

Fig. 4. Meshes in domain B.
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For both domains, orthogonality was achieved by both boundary conditions. As can be seen, with the
Dirichlet boundary conditions, mesh distortion or skewness (C2 and D2) tends to occur in the asymmetric
domains in order to satisfy the local orthogonal conditions. However, when using the present method, the
above phenomena disappeared and both mesh orthogonality and smoothness were dramatically improved
(C3 and D3).

Similarly, with the Neumann–Dirichlet boundary conditions, slight curvature differences presented in both
cases. The maximum difference appeared at the bottom part of the right curved boundary in C3 and around
the right corner of the top half-circled boundary in D3.



Table 1
Evaluation of meshes in domains A and B

Case Size ADO MDO AAR MAR a rm MCD MAD AAD

A2 41 � 41 0.21 4.54 4.43 33.9 0 – – – –
A3 41 � 41 0.09 1.57 2.72 8.42 0 0.5 0.007 2.43 0.190
A4 41 � 41 0.11 1.32 3.42 19.47 0 0.05 0.006 2.43 0.189
A5 41 � 41 0.09 1.23 2.99 13.91 0 0.1 0.007 2.43 0.191
A6 41 � 41 0.09 1.37 2.74 8.74 0 0.25 0.007 2.43 0.192
A7 41 � 41 0.13 1.87 2.86 11.35 0 0.75 0.006 2.43 0.185
A8 41 � 41 0.15 1.84 2.79 12.43 0 1.0 0.005 2.43 0.181
B2 30 � 30 0.13 24.3 4.22 13.0 0 – – – –
B3 30 � 30 0.8 30.2 1.24 4.34 0 0.5 0.01 1.38 0.41

(C1) Initial mesh (C2) Dirichlet boundary conditions with 0=α

(C3) Sliding boundary conditions with 0=α  and 5.0=mr

Fig. 5. Meshes in domain C.
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(D1) Initial mesh 

(D2) Dirichlet boundary conditions with 0=α

(D3) Sliding boundary conditions with 0=α  and 5.0=mr

Fig. 6. Meshes in domain D.

Table 2
Evaluation of meshes in domains C and D

Case Size ADO MDO AAR MAR a rm MCD MAD AAD

C2 41 � 41 0.37 1.11 3.98 46.1 0 – – – –
C3 41 � 41 0.08 0.16 2.22 2.99 0 0.5 0.006 0.294 0.025
C4 41 � 41 0.07 0.19 2.25 3.25 0 0.5 0.006 0.291 0.024
D2 41 � 41 0.62 3.70 147 5373 0 – – – –
D3 41 � 41 0.08 0.28 3.56 8.01 0 0.5 0.006 0.841 0.054
D4 41 � 41 0.12 0.34 3.53 7.14 0 0.5 0.006 0.852 0.055
D6 21 � 21 1.33 8.11 11. 5 77.3 0 – – – –
D7 21 � 21 0.21 0.8 3.44 6.37 0 0.5 0.007 1.03 0.11
D9 11 � 11 2.47 8.41 5.49 25.4 0 – – – –
D10 11 � 11 0.52 1.96 3.32 6.56 0 0.5 0.013 2.12 0.44
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3.3. Sensitivity analysis

Domain A is selected to perform the sensitivity tests of the parameter rm. Meshes generated with different
values of rm from 0 to 1 were plotted in Fig. 7 and their evaluations are listed in Table 1 and, Fig. 8 shows the



(A4) 05.0=mr (A5) 1.0=mr

(A6) 25.0=mr (A7) 75.0=mr

(A8) 0.1=mr

Fig. 7. Meshes with different parameter rm.
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changes of the indicators ADO, MDO, AAR and MAR with the parameter rm. From these figures, it is found
that mesh orthogonality (ADO and MDO) changes more mildly than mesh smoothness (AAR and MAR),
which means rm has little effects on mesh orthogonality. As for mesh smoothness, basically, the smaller rm

is, the more the top concaved boundary tends to freeze and the closer the mesh lines move to the concaved
(C2) Initial mesh in domain C generated by RL with 0=α (C4) Sliding boundary conditions with 0=α  and 5.0=mr

(D2) Initial mesh in domain D generated by RL with 0=α (D4) Sliding boundary conditions with 0=α  and 5.0=mr

Fig. 9. Effects of initial conditions.
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boundary, and vice versa. The boundary curvature changes (MCD, MAD, and AAD) are almost the same for
all the cases.

Domains C and D are selected to test the effects of the initial conditions on the present method. The final
meshes with mesh distortion and overlapping (C2 and D2) generated with the Dirichlet boundary conditions
are used as initial meshes. As shown in Fig. 9 and Table 2, the resulting meshes (C4 and D4) in both domains
are very similar to their counterparts (C3 and D3), which indicates that the present method is not sensitive to
the initial conditions.

Domain D is also used to analyze the effects of the mesh density. Three different algebraic meshes (41 � 41,
21 � 21, and 11 � 11) were generated as initial meshes. As can be seen in Fig. 10 and Table 2, with the mesh
density decreasing, when using the Dirichlet boundary conditions, the mesh distortion and mesh overlapping
(D6) become less serious and can even be neglected (D8). With the sliding boundary conditions, the boundary
changes (D3, D7, and D9) become more significant with the mesh density decreasing and, as expected, better
meshes both in orthogonality and smoothness were produced. In general, mesh orthogonality degenerate with
the mesh density decreasing.
(D5) Initial mesh with 2121× (D6) Dirichlet boundary conditions with 0=α

(D7) Sliding boundary conditions with 0=α  and 5.0=mr
(D8) Initial mesh with 1111×

(D9) Dirichlet boundary conditions with 0=α (D10) Sliding boundary conditions with 0=α  and 5.0=mr

Fig. 10. Effects of mesh density.
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With the sensitivity analysis regarding to the mesh density, it can be concluded that for a boundary with a
fixed number of nodes, the boundary curvature correction can only minimize the curvature changes to some
extent but cannot avoid curvature changes. High-ordered boundary curvature correction method has limited
effects on the curvature preservation, but using more nodes to represent the boundary (mesh refinement) can
significantly improve the curvature preservation.

4. Applications

The present method was applied to two natural rivers (domains E and F) with complex boundaries. There
are three islands in domain E and very irregular boundaries in domain F, which will cause big difficulties for
mesh generation. For both domains, the initial meshes with nearly uniform nodal distribution along bound-
aries were generated by an algebraic method.
Fig. 11. Meshes in domain E.





Fig. 13. Meshes in domain F.
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5. Conclusions

In CFD analysis, complex geometries remain a challenge not only in numerical simulation but also in mesh
generation. In this study, a boundary treatment method for applying the Neumann–Dirichlet boundary





Table 3
Evaluation of meshes in domains E and F

Case Size ADO MDO AAR MAR a rm MCD MAD AAD

E2 43 � 250 1.98 23.6 12.5 16197 0 – – – –
E3 43 � 250 4.84 30.9 4.48 60.8 0.2 – – – –
E4 43 � 250 0.13 8.98 4.45 14.32 0 0.5 0.008 6.84 0.56
F2 41 � 137 1.13 15.6 2.32 85.32 0 – – – –
F3 41 � 137 3.43 26.8 1.61 10.02 0.2 – – – –
F4 41 � 137 0.52 14.9 1.57 11.52 0 0.5 0.012 7.93 1.03
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In current study, a value of 0.5 is suggested for parameter rm, and only one iteration cycle is used to solve
the auxiliary mesh. Further researches on the evaluation of rm and speeding up the computation are still
needed.
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